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FOREWORD

This s che Interim Report on Contract FO4611=-70-C=0044, submitted In
partlal fulfillment of the contract work statement. This foterim report
desceribes the recults of the Task A laboratory effort and the Task B subscale
effort conducted under the "End Burning Technology Program' during the period
May 1970 through September 1971. A final report covering the Task ¢ full-scale
motor test and the expanded laboratory effort will be fssued at the completion
of the program. The work on this program was performed by the Aerojet Solid
Propulglon Company under the technleal dirceetion of Mr. Riehard . smith,
representing the Alr Force Rocket Propulsion Laboratory, Solid Rocket Divisgion,

Edwards AFP, California.
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ABSTRACT

Migration of mobile specles from the propellant Into the Hner and
insulatfion was found to he the main causc of burning rate variability in the
interphasge which contributes to nonuniform gurface regression in end-burning
motors. Migration of these mobile specics was glgnificantly inhibited through
the use of highly crosslinked liner/barricer systemns which contained bonding
fillers. Utilization of the liner/barricr system applied to highly permeable
Insulation materlals resulted in no detectable Interphasce burning rate vari-
ab1lity under the conditions tested. The propellants sclected for evaluation
were an UTPB/UFAP system using a liquid burning rate catalyst and a polyether-

urethane (C~1/PU) propellant utilizing a solld burning rate accelerator.

Other propellant factors, such as particle orientation and propellant
dilatation were shown to be insignificant in causing Interphase burning rate
variability. Under certain conditions «f flow and vibration, a high-viscosity
unplasticized HTPB/UFAP propellant formuiation exhibited particle classification

which caused burning rate variability in the [nterphase.

Statlstical analyslyg of the burning rate data obtained from propellant
grains prepared by a varlety of casting techniques revealed no burning rate
variability which could be attributed to the cast method usced with tﬁc HTPB/UFAP
and C~1/PU propellants sclected for evaluation. These findings were verified in

cast grains up to 16 inches In diameter.

Laboratory results were verifled In end=burning motor test firlngs of 4-

and 8.5-in., dia prafog, Xeray monltoring of clpght end=burning motor test firings

(4 cach of C=1/PU and ITPB/UFAP propellant grafns) at the China Lake Naval Weapons

Center showed that the burning surface represslon was uniform and neutral pressure-

and thrust-time traces were obtalned.

A computer program has been preparced to predict the performance of end-
burning motor:,  ‘the propram ls basced on the resulis of subseale motor test

firings as well as theoretical consfderations,
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L. INTRODUCTION

This interim report describes the results of the Task A laboratory effort
and the Task B subscale motor tests conducted as part of Contract FO4611-70-C-0044,
"End Burning Technology', for the Rocket Propulsion Laboratory (Edwards Air Force
Base, California) by the Aerojet Solid Propulsion Company (Sacramento, California).
A final report covering the Task C full-scale motor tests and the expanded labora-

tory effort will be issued at the completion of the program.
II. OBJECTIVES
The objectives of this program are:
1. To identify the meortant individual precpellant, liner, and motor en-

vironment parameters contributing to irregular end-burner surface regression,

especially in the propellant[llner interphase.

2. To quantitatively establish the effect contributed by each individual
cause.

3. To develop in the laboratory methods permitting their c¢limination or
contrel.

4, To demonstrate in subscale and full-scale motor tests that the devel-

oped solutions apply to motor conditions, i.e., that the pressure vs time perform-

ance of end-burning grains can be predicted, and that neutrality can be obtained.

IIL. SUMMARY OF RESULTS

A. TASK A, LABORATORY INVESTIGATION OF CAUSES OF NONUNIFORM BURNING
SURFACE REGPRESSION

Migration of mobile épecies from the propellant into the liner and
insulation was found to be the pfincipal causce of burning rate variability in the
interphase which contributes to nonuniform burning surface regression in end-burn-

ing motors. The nature of the mfgrating specle determines the type of interphase

Page |
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[IT.A. Tusk A, Laboratory Investigation of Causes of Nonuniform Burning
Surface Regression {cont)

burning rate variability, i.e., migrationbof an inert propellant plasticizer such
as IDP causes an increase in burning rate of up to 10% adjacent to the liner/insu-
lation while migration of a liquid burning additive such as Catocene produces a

decrease in the interphase burniug rate (as much as 20%).

As a result of work done on this program, approacies have been defined
which will permit the design of end-burning motors with acceptable neutrality of
pressure and thrust. Three methods for control of interphase burning rate vari-

ability caused by migration were explored and found feasible:

1. Balancing the concentration of inert plasticizer and liquid burn-
ing rate additive in the propellant so that migration of both specles produced no

net change in burning rate.

2. Incorporation of liquid burning rate additive and/or plasticizer
in the liner/insulation fo eliminate the tendency of these species to migrate from

the propellant.

3. Use of a barrier with low permecability to the migrating species

between propellant and insulation.

Two barrier materials with low permeabtility to both plasticizer and
liquid burning rate additive were tested and found to be effective in preventing
interphase burning rate variability. These were an NPGA/MNA/DER-332 polymer filled
with glass beads and a modification of the liner SD-886, an epoxy~-polyurethane com=-
position. The latter material, deéignated SD-886-1, was selected for use in the
Task B and Task C motor tests. In addition to its capability to resist migration,
SD~886~1 also provides excellcnﬁ bonds to the HTPB and C-1 polyurethare propellants.

i
i :
1

Deagglomeration and/or attrition of fine oxidizer particles was found
to be a factor affcecting the buik burning rate of the propellant, but did not of
itself affect variability of burning rate in the interphase. The amount of

Page 2
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IIT.A. Task A, Laboratory Investigation of Causes of Nonuniform Burning
Surface Repression (cont)

deagglomeration was shown to be a function of the viscosity of the propellant
during mixing as well as the mix time. These results indicate ﬁhe importance of
optimizing the mix cycle for a specific formulation to maximize burning rate and
minimize bacrch-to-batch variability.

‘nder certain conditions of flow and vibration 1t was found that
classification of the oxidizer particles in the uncured propellant can occur with
resulting burning rate variability in the interphase. Of a uumber of formulations
examined, only one (a high viscbsity unplasticized HTPB propellant) showed these

classification effects.

Other brOpellant parameters evaluated included orientation of solid
particles, dilatation, and microvoid formation. Statistical analyses of the data
indicated that these parameters were not significant contributors to interphase

burning rate variability.

The results of the laboratory studies were confirmed in scale-up and
casting parameter investigations involving casting of 4-, 8.5-, and 16-in.-dia
molds. Based on statistical analyses of the burning rate profiles, a vacuum éast-
ing technique with vibration and free fall of'the propellant was selected for pre-

paration of the subscale and full scale motors.

From six basic propellant formulations evaluated in the laboratory
studies, two were selected for further testing in the Task B and C motor tests.
These were ANP-3391, a C-1 polyurethane propellant containing a solid burning -rate
additive with no UFAP; and ANB—3;92, an HTPB/UFAP propellant with 1 wt% Catocene as

the burning rate additive.

Page 3
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IIT. Summary of Results (cont)

B. TASK B, SUBSCALE MOTOR TESTS

A total of eleven 3KS-1000 size (4-in.-dia grain) subscale motors were
tested at Aerojet to evaluate the effects of propellant™and motor variables and to
confirm the findings of the Task A laboratory effort. Motor design variables such
as L* and nozzle entrance angle were found to have no effect on end-burner perform-
ance. Subscale motors containing both ANP-3391 and AQB-3392 provided neutral per-
formance when the barrier liner SD-886-1 was used. With a liner which was permeable
to the migrating species (SD-896) progressive pressure- and thrust-time traces

were obtained.

Based on the results of the Aerojet firings, a selection was made of
propellants, liner, and motor configuration for confirmation of end-burning motor
neutrality in eight subscale motor tests conducted at NWC (China Lake) with X-ray
motion picture coverage in addition to pressure and thrust instrumentation. Four
motors were tested with each propellant formulation (ANP-3391 and ANB-3392), all
motors used the SD-886-1 barrier liner. Performance of all eight motors was
excellent; the neutrality of the pressure~ and thrust-time traces was confirmed by

the X-ray motion pictures which showed an even uniform burning surface regression.

Two 10KS-2500 size motors (8.5-in.-dia grain) were tested to evaluate
the effects of further scale up in motor size. One motor was cast with each pro-
pellant formulation. The first test (with ANP=3391) resulted in a motor burnthrough

due to a faulty closure seal, but the second test showed good neutrality.

Based on the results Qf the Task B subscale motor tests as well as on
theoretical considerations, a:computer program has been prepared to predict the
performance end~burning motors. The program is complete but additional refinements

are being made to improve prediction capability.

Page 4
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IvV. TECHNICAL DISCUSSION

A. TASK A, LABORATORY INVESTIGATION OF CAUS:S OF NONUNIFORM
SURFACE REGRESSION

In the Task A laboratory investigations, the critical factors affect-
ing the surface regression characteristics of end-burning solid propellant grains
were determined, and methods were devised for control of these factors to ensure
neutrality of end-burning motor pressure- and thrust-time characteristics. Labora-
tory scale work was performed to define the effects of propellant parameters and
interactions with the liner/insulation in the interphase, and selected propellant
formulations were then scaled up for investigation of effects of casting methods
applicable to the Task B subscéle and the Task C full-scale motors. Bond evalu-
ations were also conducted to permit final selection of propellants and liners
for use in the Tasks B and C motors. Details of this work are summarized in the

following sections.

1. Propellant Parameters and Effects

The critical propellant parameters evaluated were:

a. Deagglomeration of fine oxidizer particles during mixing
b. Orientation of solid particles

c. Classifiéation of solid particles

d. Migratioﬁ of liquid components into liner/insulation

e. Dilatation

Six basic propellant formulations were investigated to assess the sig-
nificance of these parameters. The six formulations were selected to permit evalu-
ation of the effects of binder type, plasticizers, solid and liquid burning rate
catalysts, oxidizer particle size, and propellant viscosity. As the critical para-
meters were defined, the number of propellant formulations were reduced. Two for-
mulations were sclected for testing in subscale (S-‘nnd 9-in.=-dia) end=burning

motors (Task B) for confirmation of the laboratory findings.

Page 5
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont) :

The formulations used in the laboratory studies were based on carboxy
terminated polybutadiene (CTPB), hydroxy terminated polybutadiene (HTPB), and
polyurethane (C-1/PU) binders. Compositions are presented in Figure 1. As shown,
the C-1/PU formulation contains Cu0202 as a burning rate catalyst with 7p oxidizer
as the fine portion of the oxidizer blend. All of the other formulations contain
0.5u UFAP and, with the exception of Formulation 2, 1% Catocene as burning rate

catalyst.
a. Formulation Adjustments

The six basic propellant compositions described above were
adjusted to a burniug rate of approximately 1.5 in./sec at 1000 psia while main-

taining adequate processing and cure characteristics.

The preliminary adjustments were conducted in 1~ and 10-1b
laboratory propellant mixes. Burning rates were measured in a microstrand burner
using 0.60 by 0.30 by 1.3-in, strands. Previous tests'with a well characterized
propellant (ANB-3066, used in Minuteman) showed that the microstrand burning rétes
(MSBR) agreed well with solid strand rates (SSBR) determined in the standard Craw-
ford bomb (Figure 2). The microstrénds were prepared fpr testing by microforming
from a smail piece of cured propellant to the correct thickness and width but
slightly longer than the finished length of 1.3-in. The strands were then indi-
vidually restricted with a rapid-cure epoxy adhesive and cut to exact firal length.
The tests were conducted in a closed bomb at an average pressurc of approximately
1000 psig. Highly reproducible resﬁlts were obtained as indicated by data in Fig-
ure 3 for ten firings of an HTPB/UFAP propellant (ANB-3392) which indicates j

standard error of only 0.8%.
The processing characteristics of tne propellants were assessed

with a Rotovisko viscometer. Viscosity bufldup at infinite shear stress and vis-

cosity as a function of applied:shear stress were determined.
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

A summary of the results of this tailoring effort is shown
below. The target burning rate was achieved with four of the six formulations;
processing considerations limited the burning rate of the CITPB formulation to
approximately 1.1 in./sec at 1000 psia. For the highly plasticized HTPB formu-
lation (4% IDP) more than 28% UFAP would be required to meet the 1.5 in./sec

burning rates.

Binder Oxidizer Blend Wt % Wt % MSBR, in./sec
Number Type Unground SSMP MA  UFAP  Catocene IDP at 1000 psi
1 Cc-1/PU 30 - -2) 4 1.44
2 HTPB - - 58 42 0 3 1.57
3 HTPB - 72 - 28 1 0 1.88
4a CTPB - 65 - 35 1 5 1.10
4b HTPB - 72 - 28 1 2 1.54
be HTPRB - 72 - 28 1 4

1.13

(1) Each formulation contains 72 wt? oxidizer and 14 wt% spherical aluminum.
(2) Contains 2 wt? Cu0202.

A summary of the formulation adjustment effort for each

propellant is presented below.

(D C-1 Polvurethane Propellant

The C-~1 polvurethane propellant (C-1/PU, No. 1 in Figure

1) utilizing the solid burning rate additive, copper chromite (Cu0202), is a modi-
fication of the propellant developed on the HART/ZAP motor programs. The burning
rate, 1.44 in./sec at 1000 psi,.was achieved in an 88 wt’ total solids formulatioen
containing 72 wt?% oxidizer (70/30 MA/unground blend), 14 wt? spheroidal aluminum
(~v60u), and 2 wtZ of Cu0202; Tﬁe binder (IDP plasticlized) is composed of B-2000
(polyether prepolvmer), TP-4040 (polyether crosslinker;. C-1 (oxidizer bonding
agent) and HDI curing agent; Minor adjustments in the crosslinker level were made
to achieve the desired mechnniéal properties. This formulation was destgnatéd
ANP-3391, '
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IV.A. Task A, Laboratory Investigation of Canses of Nonuniform Surface
Regression (cont)

The processing characteristics of ANP-3391 were very
good as indicated by data in Figure 4 which compares the viscosity buildnp of this
propellant to that of the other five basic formulaticns. After 4 hours from cur~-

ing agent addition, the viscosity of ANP-33Y1 was approximately 30,000 poises.
(2) HTPB Propellants
(a) No Burning Rate Additive

A series of HTPB formulatiouns with no Catocene
burning rate additive was mixed to evaluate the effect of IDP plasticizer level
and MA/UFAP oxidizer ratio on the burning rate. The propellants all contained 86
wt% total solids (72% oxidizer and 14 wt% H-60 spheriodal aluminum), and the binder
was composed of R-45 HTPB cured with TDI. Based on the results of these tests a
formulation containing 3 wt% IDP plasticizer and an oxidizer blend ratio of 58/42
MA/UFAP was selected for further evaluation. This formulation is typical of high
burning rate propellants with no burning rate additive. The burning rate of this
formulation was 1.57 in./sec and the viscosity while inftially low, increased
rapidly. At 3 hours from curing agent addition the viscosity was approximately
45,000 poises, but increased to >200,000 poiscs after 4 hours. The oxidizer
blend of 58/42 MA/UFAP yielded a burning rate of 1.57 in./sec at the 3% IDP
plasticizer level. This formulation (No. 2. in Figure 1) was chosen for further
evaluation since it met the burning rate requirement and exhibited satisfactory

as-cast processability.
(b) Unplasticized Propellant
An llnpldbtl(_lfed HTPB propellant containing 1%.
Catocene (Formulation 3, Figure 1) had the highest burning rate of the series,

1.88 in./sec at 1000 psi. This propellant contains 86 wt?Z total solids composed
of 14 wt¥% spherical aluminum and 72 wtZ% oxidizer (72/28 blend of SSMP and UFAP).
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IV.A. Task A, Laborato:y Investigation cf Causes of Nonuniform Surface
Regression (cont)

Because of the cure catalyeis attributable to the Catocene burning rate additive
and the rapid cure reaction associated with an unplasticized binder, isophorone
diisocvanate (IPDI) rather than TDI was used as the curing agent to improve the
potlife and processing characteristics. However, even with IPDI this nonplasti-
cized formulation (Batch 10GP-1549) showed a rapid viscosity buildup; greater than
60,000 poise at 4 hours from curing agent addition (Figure 4).

(c) Propellants Containing Both Plasticizer
and Catocene

HTPB propellant systems containing both IDP and
Catocene are represented by Formulation 4b and 4c in Figure 1. Propellants con-
taining 2 and 4 wt% IDP which provide burning rates of 1.54 and 1.13 in./sec at
1000 psi, respectively, were formulated using the sanfe binder system described
above (R-45 HTPB cured with IPDI). The oxidizer blend used was 72/28 SSMP and
UFAP.

The processing characteristics of both propel-
lants were excellent (Figure 4); viscosities four hours from curing agent addi-
tion were less than 20,000 poises. The burning rate of Formulation 4c was below
the desired 1.5 in./sec at 1000 psi. This low rate probably resulted from a com-
bination of the higher IDP content and the very low viscosity which was found to

inhibit deagglomeration of the UFAP. Formulation 4b was designated ANB-3392.
(3) CTPB Propellants

Propéllant 4a (Figure 1) was prepared using a CTPB
binder. To improve processability, 5 wt%Z IDP was used. Total solids level was
86 wt7Z (14 wt% spheroidal alﬁminhm), and the oxidizer blend was 65/35 SSMP/UFAP.
The pnlymer was HC-434 CTPB and ﬁhe curing agents a BISA/MAPO combination. The
propellant mix thickened not?cea@ly after curing agent addition, probably due to

‘ i
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

the interaction of the BISA and the high surface area UFAP particles. Further
vacuum mixing produced some reduction in viscosity but processing churacteristiés
were marginal at this solids content. The burning rate of the CTPB/BISA/MAPO
propellant was 1.10 in./sec at 1000 psi.

.

b. Studies of Propellant Effects
@) Particle Deagglomeration

Ground oxidizer in general and UFAP i{n particular
tends to form soft agglomerates during storage. Generally these agglomerates
are broken up during the relatively high shear prupellant mixing, and for propel-
lants containing larée amounts of fine-ground oxidizer (MA or UFAP), the propellant

burning rate was found to increase with increasing propellant mix time.

Although propellant burning rate is a good indirect
measurement of the extent of deagglomeration of the UFAP, a corroborative method
was developed involving a direct determination of particle size distribution of
the oxidizer in the propellant mix. 1In this procedure a sample of the uncured
propellant is extracted with chlorobenzene to separate the (Insoluble) oxidizer
and aluminum from the (soluble) binder, plasticirzer, and burning rate additive.

The solids mixture is thoroughly dispensed in the chlorobenzene in a sonlc aglta-
tor and then allowed to stand undisturbed for a specifled length of time (0.5 hr).
The supernatant liquid containing the UFAP dispersion Is decanted of?t from the
coarser oxidizer and aluminum particles which have scettled out. Standard MSA
particle size measurcments can then be made on both fractions of propellant solids.
This technique has proven to Be a valuable tool In assessing the effects of oxidizer
deagglomeration and classification. The reproducibility of the test is good as in-
dicated by the results of dupficaée measurcments from a single bhatch of propellant

(Figure 5).
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

(a) C-1/PU Propellant

The C-1/PU propellant ANP-339) (1 in Figure 1)
utilizes large amounts of MA ground oxidizer rather than UFAP to attain the de-
sired burning rate. The effect of extended mixing on this propellant is shown
in Figure 6. When the extended mix occurred before the HDI curing agent was added
and the mixture is viscous, an increase in burning rate was observed with in-
creased mix time. When the mix time was extended after HDI addition (low mix
viscosity), there was no change in burning rate. These results are indicative
of the strong effect that propellant viscosity has on particle deagglomeration

and/or attrition.

(b) HTPB Propellants

The effects of mix time on the propellant burn-
ing rate and the particle size of UFAP extracted from the four HTPB formulations

are tabulated below:

Burning Rate at 1000 psig/UFAP
Particle Size (u) 507% pt MSA
Extended Mix Time:

SSMP  MA  UFAP  Catocene  IDP 0.5 hr 1.3 hr 2.0 he
- 58 42 0 3 Las/3.6M 1517310 1is1/2.9)
72 - 28 1 0 1.81/0.67 1.88/0.62 1.97/0.58
72 - 28 1 2 1.55/0.69 1.59/0.64 1.64/0.51
72 - 28 1 4 1.13/0.84 1.13/0.66 1.10/0.56

Avg particle size of neat UFAP was 0.56u

(1) Mixture of UFAP and MA

The UFAP was extracted from the remainder of the propellant sollids by the tech-
niques described above, and the particle size (50% pt) was determined in the MSA

particle size analyzer.
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IV.A.  Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

For the propellant containing no Catocene burn-
ing rate additive there was a small increase in burning rate (betweeus 0.5 and 1.5
hr mix time) and a small decrease in average particle size as the mix cycle was
increased. The particle size measurements on this propellant were less conclusive
because most of the MA ground oxidizer was present along with the UFAP in the de-
canted supernatant liquid and the average measured particle sizes are comparatively

large.

The higher viscosity unplasticized propellant
(with 1 wt’ Catocene) showed significant [ncreases in burning rate and significant
decreases in UFAP particle size with extended mixing. Furthermore, MSA particle
size analyses on the coarse fraction of extracted solids (SSMP plus aluminum) in-
dicated that some attrition of the SSMP fraction had occurred (Figure 7). Similar
lncreases in burning r~te and decreases in particle size were observed with the

propellant containing 2 wt% IDP.

For the formulation with 4 wt? IDP there was 1o
apparent increase in burning rate with extended mix time although u reduction in

measured UFAP particle size did occur.
(c) CTPB Propellant

The CTPE propellant (4a in Figure 1) showed no

effect of extended mix time on burning rate:

xtend Mix Time,’hr  MSBRK at 1000 psia, in./sec
0.5 1.08
1.5 1.11
2 1.08

Interaccion of the CTPB polymér with the high surface area UFAP may have {nter=
fered with the particle size mcas@rements of the UFAP extracted from the propel-
lant g0 that no meaningful MSA dn;n were obtafned. 5écnnsv of the difffculties
with processing and cure of tHis propellant, no further work was done with CTPB

formulations in the Task A cffort;
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IV.A.  Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

(2) Migration

While deagglomeration of the UFAP was found to be a
«cant factor affecting the bulk or average propellant burning rate, migra-
t:.a of liquid burning rate additive (Catocene) and/.r plasticizer into the liner/
{insulation was shown to he the major cause of burning rate variability in the inter-
phase. In evaluating the effects of migration of these mobile species, propellant
was cast against the insulation or liner and cured. Variations in propellant burn-
ing rate as a function of distarce from the insulation or liner interface were then

determined using the microstrand burning rate technlique described above.

In Figure 8 are shown burning rate profiles for HTPB/
UFAP propellants containing 1 wt% Catocene and IDP levels of 0, 2 and 4 wt’% cast
against a 30-mil thick layer oflSD-878-2, a liner which readily absorbs IDP and
Catocene. As would be expected; the migration of 1DP and Catocene have opposite
effects on the burning rate. Migration of the former tends to increase the rate
while migration of the latter lowers the rate. As shown in Figure 8 the effects

were balanced out with a propellant containing 1 wt% Catocene and 4 wt7 1IDP,

The opposite effect on burning rate is observed
(Figure 9) for ANP-3391 (C-1/PU) propellant cast against Rocketdyne's R~151 insu-
lation. Here the main migrating species 1is IDP plasticizer (a solid burning rate
catalyst 18 used), and the result is an increase in burning rate in the propellant

[nterphase.

These results indicate that migration of the mobile
specles can have a large influence on nonuniform burning front regression In end-
burning motors. ‘llethods for control of migration apd/or elim{nation of there
interphase burning rate gradients are discussed in Section IV., A., 3. of ﬁhls

report.
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IV.A.  Task A, Laboratory [nvestigatlon of Causes of Nonuniform Surface
Regression (cont)

(3) Particle Orlentattlon

The {rregular shaped solld particles (oxidizer, alumi-
num) in solid propellants become oriented with respect to thelr long a«is in the
direction of propellant flow during the casting operation. The extent of orienta-
tion and the degree to which the propellant properties are affected (s dependent
on the aspect ratio (L/D) of the particles. 1In some propellant systems, changes
of 10 to 15% in burning rate (anisotropy) ascribable to particle orientation have
been obgerved. In the work described below, the propellants were cast ayinst a
totally impermeable barrfer (aluminum fofl) to preclude migration of the wobile

ingredients. Thug any changes in burning rate would be caused by orientation

effects.

Orientation studles with the HTPB/UFAP propellant,
ANB~3392 (4b in Figure 1), revealed that alignment of the coarse oxidizer partfclcs
does in fact occur. ‘lowever, no signiflicant anlsotropic characteristics In either
burning rate or mechanical properties were noted. The particles were orlented by
pressure casting the propellant into a tubce 24 inches long by 1.5-in.-dla. After
cure, burning rates (MSBR) and microtensile properties were measured In both hori-
zontal (H) and vertical (V) directions at the top, middle and bottom of the tube.
Photomicrographs revealed significant orfentatlon of the coarsce uxidi{zer. How-
ever, as shown below, no directional differences were found In either burning rate

or mechuanical properties.

ooBettom o ibddle oo 0 o Tep
Tube Position A\ " jﬁJl{[ﬂ A\ I 7 Baflf v o ?ﬁJ{Lﬂf
MSBR at
psi, in./sec 1.51 1.48 2.0 1.49 1,48 0.7 1,43 1,43 0.0
Modulus, psl 1308 1256 -4.1 1267 1204 =5.2 1297 1337 +3.1

- e o (B " 1 5. o

Ve Vertical

H = Horlzontal

This lack of anfsotrople occurrence Ls 1ikely due to the fact that the hurnlhg rate
Ls controlled by the UFAP, and the UFAP particles, because of a low aspect ratio,

do not orient sufficlently to cause antsotroplic burning rate behavior,
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

Tests were also conducted with the C-1/PU propellant
(ANB-3361) with the following results:

Bottom L Middle Top
Tube Position \'/ H % Diff \Y H % Diff \Y H % Diff
MSBR at 1000
psi, in./sec 1.54 1.49 -3.4 1.51 1.49 ~1.3 1.52 1.45 -4.8
Modulus, psi 2355 2175 ~-8.3 2376 2305 -11.7 2430 2562 ©  45.4
V = Vertical
H = Horizontal

These data indicate that this non-UFAP-containing formulation may show a small
degree of flow-induced anisotropy. However, additional evidence that neither of
these formulations exhibit significant anisotropic behavior was obtained in the
casting studies on large scale (up to 16-in.-dia) grains described in Section IV.,

A., 2. of this report.
(4) Particle Classification

It is conceivable that in propellants containing mix-
tures of very coarse and verv fine particles, conditions of vibrati&n and flow
adjacent to an interface could exist which would result in classification of the
particles, e.g., the UFAP particles could filter through the spaces between the
coarser particles and concentrate next to the interface. A priori, it was believed
that vibration would facilitéte classification. Since flow orientation of the
particle was shown to have no effect on the properties of these propellants, tests
were conducted to determine if flow classification could cause burning rate vari-
ability in the interphase. To evaluate conditions conducive to particle classifi-
cation, propellant was cast so that it flowed down on inclined plane and collected

in a reservoir:
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IV.A. Task A, Laboratory Investigation of Causcs of Nonuniform Surface
Regression (cont)

Propellant
Stream

Point of Maximum
Classification

Castings similar to the above were made with and without vibration using the C-1/
PU and the HTPB/UFAP propellants. - The mold was lined with an impermeable barrier
to prevent migration. Microstrand burning rate data on specimens taken at the
bottom curner of the reservoir;and‘in the bulk of the propellant showed the follow-
ing results: 5 |

Change 1in MSBR

iy Between Bottom Corner
: and Bulk of Propellant

P Propellant Vibration No Vibration
% c-1/PU ; 0% 0%
% HTPB/1% Catocene/0% IDP +4.17% +0.4%
HIPB/C% Catocene/3% IDP - 0%
HTPB/1% Catocene/ZZ P 0% . -

Oniy the unplasticized HTPB/UFAP (no Catocene) pro-
pellant showed a significant difference in burning rate. It also appears that
vibration plays a significant }ole:in particle classification as evidenced by a
ten-fold increase in burning rate Variabi}ity compared to the sample cast without

vibration. The burning rate profiles for this propellant and the 2% IDP plasti-

cized propellant are shown in [igures 10 and 11 respectively
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

To confirm this apparent difference, these two pro-
pellants were again prepared and cast in a similar fashion into aluminum-f&il
lined molds. To facilitate removal of the solid particles for direct measure-
ment of particle size, no curing agent was used in the batches. ‘The propellant
was sampled at the point of impingement and at distances from the bottom corner

ranging from 0.1 to 0.6 1in.

No changé was observed in the UFAP particle size
distribution at the various samping positions (Figures 12 and 13). There was,y
however, a difference in the Coarse particle distribution for the two propellants
as shown in Figures 14 and 15. ln Figure 14 the distribution curves for the coarse
fraction of the particles show no trend with respect to sampling position in thé
IDP-plasticized propellant. Howéyer, for the unplasticized formulations (Figure
15) the sample taken nearest the?interface shows a higher concentration of fines
than do the other positions whicﬁ are all grouped within a relatively narrow band.
These particle size analyses of the coarse fraction of solids confirm the inter-
phase burning rate behavior of tﬁe two propellant systems and indicate that ﬁarticle
classification may be a factor affecting interphase burning rate variability‘of the

unplasticized HTPB/UFAP formulation.
(5) Dilatation Effects

Dilatatlbn, or the formation of vacuoles adjacent to
oxidizer particles, can occur in propellant under certain levels of stress and
strain. Continued growth of the vacuoles can lead to the release of the entire
polymer matrix.from the oxidizer»surface (dewetting) with an appreclable effect
on the burning‘rate. To detefmine if dilatations would be a factor in interphase
burning rateivariability, ANPf339l (C-1/PU) and ANB-3392 (HTPB/UFAP) propellants
were prepared &lth and withouf oQidiZer bonding agents. The dilatation strain
level was determined for each modiflcntion. Microstrands of each formulation were
then prestrained to this dilatation strain level, encapsulated with a rigid epoxy

resin, and fired in the micrqstrand burner. The burning rates of the propellants
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IV.A. Task A, Laboratory Imvestigation of Causes of Nonuniform Surface
Regression (cont)

at the dilatation strain level are shown in Figure 16. No effect of strain on
the burning rate was noted except where the oxidizer bonding agent was not in-
cluded in the formulation. The presence of the oxidizer bonding agent limits the
formation of vacuoles or tears to the binder matrix during dilatation. Without
the bonding agent the weak binder-oxidizer bond fails and vacuole formation adjac-

ent to the oxidizer surface results in an increase in burning rate.

Based on these data It 1s concluded that if the strain
level in a motor approaches the dilatation strain of the propellant, reinforcement
of the binder-oxidizer bond (bonding agent) may be necessary to prevent burning

rate variability.

2. Scale-Up and Casting Studies

The results of the laboratory work described above indicate that

the major contributor to interphase burning rate variability is migration of mobile

species. To confirm this conclusion, two of the propellants (ANP-3391 and ANB-3392)

were scaled-up in batch size and cast into subscale (4- and 9-in.-dia) and full-
scale (16-in.-dia) molds for evaluation of effects of scale-up and casting tech-
nique on interphase burning rate. All molds were aluminum-foil lined to prevent

migration.

A 60-1b batch of each formulation, ANB-3392 and ANP-3391 was cast

into 4.5~ to 5-in.-dia molds by a variety of casting techniques. These were:

Cast Method Casting Head Vibration
Vacuum, free-fall 2 in. dia orifice No
Vacuum, free-fall 2 in. dia orifice Yes
Bayonet 2 in. dia orifice No
Bayonet 4 in. dia multi-orifice No
Vacuum, free-fall 4 in. dia multi-orifice No
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

After propellant cure, microstrand burning rates were measured normal to the grain
surface in the areas shown in Figure 17. These data are shown in Figure 18 for

ANB-3392 and in Figure 19 for ANP-3391.

To provide an improved basis of comparison of the burning rate-
data obtaired from the different casting methods, the data were normalized by
dividing the individual burning rates by the average burning rate obtained over
the sampling surface. These data are presented in Figure 20 for ANB-3392 and |
Figure 21 for ANP-3391 where ﬁhe ratio of each data point to the mean value ié
shown for each sampling position in all the casting methods examined. As indi--
cated by the data, no consistent pattern of burning rate variability across the
grain attributable to a particular casting method was observed. However, an anal-
sis of variance was performed on the pooled data shown in Figures 20 and 21 which
revealed that although there was no statistically sigﬁificant difference in the
ANP-3391 data, there was a difference ‘n the ANB-3392 data. This difference could
not be correlated with the casting methods used, and it was postulated that it was
the result of small temperature fluctuations in the microsirand burner during test-
ing of the strands. The temperature sensitivity of burning rate of ANB-3392 is
much higher than ANP-3391 (Section IV., A., 4., b.) which could explain why no
differences could be detected with this latter formulation,.

To substantiate ﬁhis hypothesis, the data for ANB-3392 were cor-
rected for temperature effects based on control strand firings routinely conducted
prior to and during each series of tests. This analysis was performed on data oL—
tained from the top and bottom of a grain prepared by bayonet casting through a
4-in.-dia multiorifice head (no vibration) and another grain which was vacuu. cast
through a 2-in.-dia orifice with Qibratioﬁ. The uncorrected data (Figure 22) showed
a significant difference in the variance analysis, while the data corrected for
temperature effects (Figure 23) diﬁ not. Based on these results, improved tempera-

ture control equipment was ins}all}d on the microstrand burner.
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

These statistical analyses verify the earlier observations that
there is no appreciable varidbility in the burning rate profiles in grains of ches°

particular propellants that can be influenced by the casting method used.

Based on an aﬁalysis of these test results, a vacuum casting with
vibration technique was tentatively selected for processing the subscale and full-
scale motors. To confirm that:this method would not introduce within~grain vari-
ability in burning rate for thesé motors, 4-, 8.5-, and 16-in.-dia grains were cést
from 30-gal batches of ANB-3392 through a 2-in.-dia orifice. Microstrand burning
rates were measured normal to the surfaces across the diameters of the grains.

The burning rate profiles (Figures. 24, 25, and 26) showed nu effect which could

be attributed to propellant or casting parameters.

Analysis of the regression lines through the data points showed

wo significant differences from the mean values.

3. Liner Interphase Parameters

The results of thé laboratorv investigations of propellant formu-
lation effects and the scale-up and casting technique studies provide strong evi-
dence that migration of the liquidbburning rate additive (Catocene) and/cr plasti-
cizer into the liner/insulation is the chief cause of burning rate variability in
the propellant interphase. It'then becomes necessiary to define methods for: pre-
venting migration or compensating for its effects while maintaining good bonds

between propellant and motor insulation.

a. Balancing Concentration of Mobile Specles
The ]inef SD;878-2 has been used successfully at Acrojet,
with a number of HTPB Formulationsi ANB-3392 bonds to this liner with a strength -

exceeding the cohesive strength of .the propellant. However, the tendency of this

:

A T o

Page 20

e A ek



Report AFRPL-TR-71-138

IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

liner to absorb Catocene and plasticizer from the propellant with corresponding
changes in interphase burning rate (see Section IV., A., 1., L., /"M 1s anvunf

acceptable characteristic.

One method of minimizing or eliminating migration intd this
liner is to incorporate the Catocene or plasticizer into the liner itself priof
to casting with propellant. This approach was demonstrated with ANB-3392 propél-
lant cast against SD-878-2 liner containing Catocene in amounts equivalent to
1/4, 1/2, or equal to that in the propellant binder. Microstrand burning rates
measured across the interphase (Figure 27) show this method to be cffective in

minimizing burning rate gradients due to migration of Catocene.

Although this test was conducted with the liner only (on
aluminum foil) it would be expected that tue principle could be extend2d to in-
clude addition of plasticizer or Catocene to both liner and insulation in a motor

bonding system.
b. Barrier Coats

The tendency of the mobile species in the propellant to
migrate is a direct function of the permeability of the liner and insulation to
the migrating materials. This permeability is related to the polvmer structure
and cross link density and varies widely among different liners and Lnsulations
as indicated by data on absorption of IDP and Cutocene (Figure 28). Two of the
least permeable materials aré the SD-886-1 lincr and an epoxy material composed
of NPGA/MNA/DER-332 with glass béads as a filler, '

The loQ pefmenbility of these materials suggests that they
could be used as barrier coats on the insulation to inhibit migration of plasti-
cizer or burning rate additive. To evaluate the advantages of such a barrier.’
30 mil coats of each material were applied to R-151 insulation and cast with:

ANB-3392 propellant. As shown by data in Fipgurce 29, both materials uflucttley

H
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IV.A. Task A, Laborutory Tnvestigation of Causes of Nonuniform Surface
Regression (cont)

eliminated burning rate decrease in the interphase. The burning rate increased
in the interphase with ANP-3391 (CfllPU) was likewise eliminated (Figure 30) by
use of a 30 mil barrier coat of SD-886-1,

The R-151 used in the above tests was 0.10 {n. thick. Bar-
rier evaluation tests were also performed with thicker (3/8 in.) sections of R-151.
Burning rate profiles of the R-151/ANP-3391 system are presented in Figure 31 for
the interphases composed of R-151 (3/8 in. thick) with 0, 15, and 50 mils SD-886-1.
Analysis showed no significant difference between the mean value of the burning
rates and the regression line for either thickness of SD-863-1 (Figure 31). The
data for the interphase containing the uncoated R-151 insulation show the effect
of migration in that the burning rates are above the +3a limits of the R-151/
SD-886-1 system for a distance of 0 to 250 mils from the interface.

Similar tests were performed with ANB-3392 propellant '
(Figure 32). The R-151 was coated with 15, 30 and 50 mils $D-886~1. The regres-
sion line deternined from the combined data shows a slope significantly different’
from the mean (Figure 32). Regfession analyses run on the individual interphase
burning rate profiles show that the slope is significantly different from the mean
only where the 50 mil thick coating of SD-886-1 is used. 1t is believed that this
discrepancy is due to temperntuﬁe variation during strand firing, since it is un-
likely that a thicker coat of SD—886-1 would promote burning rate variability. ‘
Further confirmation of this suﬁposition is found in the fact that the burning
rates show a slight increase neér tﬁe interface rather than i1 decrease (which
would occur if migration of Catécené had taken place).

!

Since the permeability of the barrier and its capability to
inhibit migration could depend oh the physical and chemical properties of the cured
binder, a series of tests was cohduéﬁed to evaluate the effects of SD-886-1 liner -
processing variables on migratioh ofiplASticlzer from‘AN?-3391 propellant. The

processing variables examined wefe llner thickness (30 and 50 mils), cure tcmperhture
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

(135 to 1%""F), and cure time (6 to 24 hours). Microstrand burning rates were’
measursd acruss the interphase of molds containing SD-886~1 liner prepared underb
the above conditions and cast with ANP-3391 propellant. The data (Figure 33)
show no significant effect on interphase burning rate in spite of this wide vari-

ation in liner processing conditions,

 Although these barriers effectively inhibit migration of
plasticizer and Catocene under the conditions tested, this solution may not be
completely satisfactory in preventing burning rate variability because the bar-
riers do not have a zero permeability but rather possess low permeability. Thus
changes in burning rate may occur during long term storage, particularly at ele-
vated temperatures. Since migration of these materials is governed by diffusion
equations (such as Fick's law), the magnitude of the change in burning rate with
a given barrier will depend on temperature, time, and concentration of the migrat-

ing species.

To gain a preliminary assessment of the effects of storage
at elevated temperature on the effectiveness of the SD-886-1 liner barrier, inter—~
phase burning rates were measured in ANB-3392 propellant cast against R-151 insu-
lation with and without the barrier. The measurements were made after storage of
the specimen for 38 days at 80°F and after storage for 17 days at 80°F followed .
by 21 days at 135°F. The data (Figure 34) indicate that migration does increase
in the sample without the barrier as a result of the elevated temperature. How-
ever, the interphase burning rates of the samples with the barrier show no vari-
ability, indicating that the barrier is still effective under these conditione.
There appears to be an upward shift in the burning rate of the propeIlant as .a
result of 135°F storage; this effect was confirmed subsequently in other storage
tests described in Section 1IV., A;, 4., b., (3) of this report.

Based on the above data, it is concluded that the use of a
low permeability barrier to iohibit migration is a sound approach, but additional
work 1s being conducted in an, expanded laboratory effort to better define the effects.
of storage conditions, barrier composition, and chemical nature of the mobile species

on migration through these Low permeability barriers.
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

c. l.iner-Propellant Bond

In addition to minimizing migration of mobile species, a
barrier coat must alco be capable of providing a good bond strength to the pro-
pellant. Both the SD-886-1 and the epoxy barriers (A-35 washcoat used with the
latter) do bond well to the HTPB/UFAP propellant ANB-3392 propellant as shown by

standard DPT screening tests shown below:

Bond Tensile Strength, psi

-65°F  17°F  150°F
R-151/EpoxyBarrier*/A-35 518 156 110
R-151/5SD-886-1 673 199 128
139 (after 48 hr
at 150°E)

* NPGA/MNA/DER-332/Class beads

The bond tensile strength of the C~1/PU propellant, ANP-3391,
to SD-886~1 was also quite high: '

; Tensile Strength, psi
Insulation/Liner A -65°F 77°F 150°F

R-151/SD-886-1 618 245 145

These results suggest that good bonds are obtainable with
either type of propellant to SD-886-1 liner. However, additional tests were cén-
ducted using poker chip specimehs to better define the bond strength as a function
of temperature and to compare thé bondability of SD-886-1 liner to that of the
NPGA/MNA/DER barrier originally‘evaluated bv Rocketdyne. The specimens were con-
structed as follows: metral/Chemlok-305 adhesive/ANB-3392 propellant/liner (barrier)
R-151 insulation/Epon-901 adhesive/metal. A-35 washcoat was used on the DER-332/
MNA/NPGA barrier material. The{propellant thickness was 0.3 in. by 3.5-in.=-dia
and cut back 0.5 in. along the periphery at the liner/propellant intertace, sovthat
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

the effective diameter of the liner/propellant bond interface was 2.5 in. The
specimens were tested at a crosshead speed of 0.02 in./min at temperatures of ~70,
=45, 77, and 140°F. Even though the stress was concentrated in the reduced pro-
pellant/liner bond area, the failures all occurred at the propellant/Chemlok=~305
glue line. Thus, the true strengths of propellant/liner systems tested are greater
than the measured values (Figure 35). The values for both bonding systems appear

to be essentially identical.

Preliminary tests indicate satisfactory bond storage stabi-
lity for both barrier systems. DPT =pecimens composed of ANB-3392 bonded to either
barrier show no appreciable change in bond strength over a nine week storage period

at 77°F (Figure 36).

Because of the superior bond strength of both propellant
systems to SD-B886-1 and its effectiveness in minimizing burning rate va Jbilfty
in the interphase, it was selected for use in lining the test motors to be fired.

in the Task B Subscale Motor Test eftort.
d. Microvoids

One possible cause of uneven burning surface réhression
in end-burning motors was postulated to be microvuids entrapped by an uneven liner
surface during grain casting. To evaluate thils possibility, the HTPB/UFAP propel-
lant ANB-3392 was cast against clear plastic in sheet and cylindrical form. Lven
with a very uneven surface (caused by lettering impreséions in the plastic), no
voids could be observed in a microscopic examination (250X) of the interface.
From the results of these tests it was concluded that microvoids are probably .

not a contributing factor to the uneven burning surtface regression.

r
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IV.A. Task A, Laboratory Investigation of Causcs of N&nunlform Surface
Regression (cont)

4. Propellant Selection for Task B

a. Basis for Selection

Two propellant systems were selected for scale-up and test-~
ing in subscale motors in Task B. These were the C-1/PU system (1 in Figure 1)
designated ANP-3391 and the HTPB/UFAP formulation containing 2 wtZ IDP (4b in.
Figure 1) which was coded ANB-3392. An important consideration in eliminating
Formulations 2 (HTPB/UFAP, no Catocene), 3 (HTPB/UFAP, no IDP) and 4a (CTPB/
UFAP) was the rapid viscosity buildup associated with these propellants (refef
to Figure 4). Formulation é4c (HTPB/UFAP, &4 wt% IDP) was extremely fluid but too
low in burning rate. The low burning rate as well as the low viscosity of this
formulation is a direct result of the high TDP content. Increasing the IDP con-
tent of the HTPB/UFAP propellants from 0 to 4 wt’Z has a marked effect on the bufn-

ing rate as shown Iin Figure 37,

ANP-3391 was selected because, {n addition to fts excellent
processing characteristics, it has a solid burning rate accelerator,-(Cu0202. ;Also,
since there is no UFAP in this formulation, a broader basce of formulation charac-

teristics could be examined.
b. Properties of Selected Propellants
() Processing Propertices

Both propellants have excellent processing charac~
teristics as determined by vlscosity measurvments for perfods up to six hours
after curing agent additlion, thus providing ample time to cast the tull-gcale
motors. ANP=3391 (C-1/PU) wn@ the more fluld of the propetlants with viscosfties
of V2000 to 13,000 poises (110°F) at 2.5 and 6 hours, respectivelv, atter curing

i
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IV.A. Task A, Laboratory Investigation of Causes of Nonuniform Surface
Regression (cont)

agent addition (Figure 38). ANB-3392 (HTPB/UFAP) possessed a somewhat higher
initial viscosity, ~10,000 poises, which increased to 20,000 to 24,000 at 6 hours
after curing agent addition.

: » The effect of applied shear stress on viscosity for
these propellants (Figure 39 for ANP-3391 and Figure 40 for ANB-3392) indic:i.te
that ANP-3391 was essentially Newtonian in flow behavior up to six hours after
curing agent addition. ANB-3392 exhibited near-Newtonian flow behavior for up to
four hours from curing agent addition with slight pseudoplasticity at six hours;
These excellent flow characteristics virtually assure that sound end~burning grains

can be cast.
(2) Mechanical Propertices

The analysis of the mechanical properties ANP-3391 and
ANB~3392 are presented in Appendix A.

(3) Burning Rates

The solid strand burning rates (Crawford bomb) of ANP-
3391 and ANB-3392 measured over the temperature range of -65 to +150°F (shown in
Figures 41 and 42 respectively) indicated that temperature sensitivities of the
propellants were 0.09°F for ANP- 3591 and 0.26%/°F for ANB=3392., This 0.26% value
is considerably higher than antlcipated; motor firing to deflne the correct value

arc planned.

The excellent reproducibility of the burning rates
as well as viscosity characteristics of ANB-3392 prepared in batch mixes ranging
from 1- to 350-1b is {llustrated by data shown {n Figure 43, This highly desir-
able reproducibility of both burning ratc and processability was obtained even

though four different grinds of UFADP wore usced.
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IV.A.  Task A, Laboratory Investlgation of Causes of Nonuniform Surfaco
Regression (cont)

Fine adjustments Lo the burning rate of this propel-
lant can be easily accomplished through small changes In the Catocene level. Data
available (Figure 44) indicate that burning rates of approximately 0.5 to 3.2 In./

sec at 1000 psia can be achieved by varylny the Catocene content from zero to 5 wt?.

To evaluate the ¢ffects of elevated temperature aging
on the burning rotes of these propellants, bulk specimens of ANP-3391 and ANB-3392
were stored at 135°F for periods of 0, 3 and 6 wecks and solid strands were fired
over a pressure range of 800 to 3000 psip. As shown by the data (Filgure 45) ANP-
3391 exhibited essentially no change In burning rate during these storage periods.
ANB-3392, however, did show a small increase In burning rate (average of 4.4%)
during storage wirh all the change occurring during the first three weeks at 135°F
(Figure 46). The increased burning rate did not change tn: pressure exponent,,
Figure 47), l

The tnsensitivity of the burning rate of ANP=3391 under
accelerated aglng conditions Is In agreement with prcyinus experience with C-1/rU0
propellant ut{l{zing the solid burning rate catalyst, CuQ202. ANB-3392 uses a
Liquid burning rate accelerator, Catocene, which apparently undergoes o chemfeal

or actlvity change in propellant stored at elevated temperatures.,
B, TASK B, SUBSCALE MOTOR TESTS

The objectives of the Task 8 subscale motor tests were (1) to confirm
the causes of uneven burning surface regression establfished in the Task A labora-
tory effort, (2) demonstrate methods of burning control and performance predintibn.
(3) determine ceffects of motor and nozzle desian parameters, and (%) provide data

basls for work to he conducted In Task €.
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IV.B. Task B, Subscale Motor Tests (cont)

Nineteen 3KS-1000 size motor tests were conducted as part of the Task
B effort. Eleven of these motors were tested at Aerojet and eight at NWC. The

specific objectives of each of these motor tests are summarized below:

Test Number Tested At | Propellant ANB-
1 Aerojet 3302
2 Aerojet Evaluate effects of nozzle entrance 3392
3 Aerojet angle and motor L* 3392
4 Aerojet 3392
5 Aerojet Confirm L* effect with C-1/PU 3391
6 Aerojet Confirm effect of low L* 3392
7 Aerojet Test at +140°F " 3392
8 Aerojet Stress relieved bonding system 3391
9 Aerojet | 3392

10 Aerojet Evaluate effect of migration 3391
11 Aerojet Stop-fire ’ 3392
12 NWC 3392
13 NWC Evaluate flame front regression with 3392
14 NWC X-ray motion picturess 3392
15 NWC 3392
16 NWC 3391
17 NWC Evaluate flume front regression with 3391
18 NWC X~-ray motion pictures 3391
19 NWC | 3391

A tabulation of the results of these subscale motor tests is given in Figure 48,
and a detalled description of the‘igniter and motor designs and the results of
the individual tests are presented in the following paragraphs. Also presented
is an interior ballistics analysis of end-burning grain performance as related

to the experimenta. findings under this task.

Page 29



4
i

Report AFRPL-TR-71-138

IV.B. Task B, Subscale Motor Tests (cont)

1. Igniter Design

a. Arc-Image Ignitability Tests

Arc-image furnace ignitability tests were conducted on
ANB-3392 and ANP-3391 propellants.i The objectives of the tests were to deter-
mine the threshold ignition energy requirement (TIER) and the low-pressure igni-

tion limit, P*, of the fresh cut surfaces of each propellant. This information

was needed to desig.: igniter systems for the motors.

The threshold ignition energy requirement {s defined as -
the radiant energy required to ignite the propellant with a 0.50 probability as
determined by observationn of consecutive fire and no~fire tests, which have thé
narrow2st possible range of exposure times allowed by the ignition characteristics
of the propellants. From 10 to 20 tests are conducted per flux—-pressure condition
to determine the ignit{on encergy requirement. The low-pressure {gnition limit, P,

is defined as the pressure below which sustained ignition and combustion does not

occur. This 1is done at a constant, arbitrarily chosen exposure time of 300 milli-
seconds, which was selected because it exceeds the action time of most igniteré by
a wide margin and yet is short cnough to preclude total ablation of the sample in
the event of a no-firc test. The ignitability mecasurements were conducted at‘a

flux level (é) of 80 cal/cmz—sec and pressure levels of 1, 2, and 3 atmospheres in

nitrogen gas.

The ignitability data arc presented in Fipures 49 and 50.
The threshold ignition energy requirement (TIFR), is the product of the flux and
exposure time at a given pressdre because the radlant energy pulse-time profile is
essentially a square wave., Daﬁa ih Figure 49 show that the propellants vary only
slightly in TIER at one atmnsphere:and are nearly equal at two and three atmosphefes.
In Figure 50 it is seen that tﬁe 1gnitab111ty (exposure time) of ecach propellant is ‘
a strong function of pressure.i Thé pressure asvmptote is ostimated to be at five

atmospheres. The P* values are not unusually low for fast burning propellants?
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IV.B. Task B, Subscale Motor Tests (cont)
however, TIER data for both propellancs (1.3 and 1.4 vnl/cm2 at 2 atw) place them
in an extremely ignitable category comparced with other polybutadiene and poly-
urethane propellants, such as ANB=3066 and ANP-2932, both of which have TIER values
of 4.0 to 5.0 cul/cm2 above two atmospheres.
b. Igniter Selection

Based on the motor size, grain design, and arc-image testing

the igniter selected was a pencil-type consisting of a paper tube filled with an

11-gm charge of BKNO3 pellets.

2. 3KS-1000 Size Motor Design

Standard ASPC 3KS-1000 motor chambers and hardware were modified
for the subscale end-burning motor tests. The chambers were made from 5-in. dia
steel pipe and were hvdrotested at 2500 psi. The head end and nozzle were assem-
bled to the chamber with a single sct of tie bolts. Motor free-volume was adjusted
for L* evaluation by varying the head end potting thickness. The chambers were
modified to uccept two Taber pressure transducers, a Kistler high-frequency pres-
sure transducer and a Hv-Cal Asvmptotic calorimeter. Uniformity ot flame front

regression was to be determined by thermocouples placed in the propellant grain.

The nozzles werc designed for optimum expansion with either a
45~ or 20-degrec entrance (with respect to centerltine) and a 15-degree conical
exit. Silver-infiltrated tungsten throats were fitted into AT graphite inserts

to preclude slgnificant erosion.

Provisions were made for installation of thermocouples in the
grain located in staggered axial and radial positions to allow for a semi-quanti-
tative assessment of the shape of the burning surface. It was planned to install
the thermocouples either prior to casting or by drilling and potting the junctions

Into the cured grain.
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IV.B. Task B, Subscale Motor Tests (cont)

3. Results of 3KS-1000 Size Motor Tests

a. Motor 1

The first subscale test motor fired was to have been part
of a series of four to evaluate the effects of L* and nozzle entrance angle with
ANB-3392 propellant.

The performance of this 13KS-1000 subscale motor was pro-
gressive, starting at 1400 psia and increasing to 3150 psia at 1.18 sec, when

the aft chamber seal failed. The nominal pressure was to have been 1900 psia for

5.5 sec.

It was concluded that the progressive increase in pressure
was caused by a progressive failure of the bond between the SD-830 potting com-
pound and the propellant. The burnthrough occurred near the location of a Vibra-
damp ring seal that apparently failed. The design of the subsequent motors was
altered in that the grains were fully released, restricted, and cartridge loaded

into an insulated chamber.
b. Motor 2

Motor 2 used ANB-13392 HTPDL propellant with an L* of 630 in.
and a nozzle entrauce angle of 45 degprees. Pressure and thrust-time histories
are given in Figure 51. The ignition transicent was smooth and uniform. Burning
of the motor was neutral until 4.918 sce, when the center thermocouple was exposed.
The thermocouples located at 1.0-in. radius and the liner/interface (at the same
axial station as the center thermocouple) were oexposed at 4.980 and ?.058 sec,
respectively, indicating thermocouple restriction failures and adding to the
pressure rise, which peaked at 2405 psia at 5.493 sec, when web burnout started.
The motor thrust trace followed the pressure profile and indicated an essentially

constant throat area.
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c. Motor 3

Motor 3 was the same configuration as Motor 2, except that
the nozzle entrance angle was 20 degrees with respect to the centerline. Per-
formance was also similar to Motor 2, as shown in Figure 52. The effect of nozzle
entrance angle was apparently insignificant. A slight pressure rise started at
about 4.0 sec and leveled off at 4.6 sec. The ceater, 1.0 in. radius and liner
interface grain thermocouples were exposed at 5.085, 5.170, and 5.184 sec, respec-
tively, again causing a sharp pressure rise. The maximum pressure of 3550 psia

occurred at 5.323 sec, when the nozzle insert ejected.

Based on the results of these first two tests, installation

of thermocouples by potting into the cured grain was discontinued.
d. Motor 4

The fourth motor used the 45-degree nozzle with the smallgr
L* of 264 in.. No thermocouples were installed in the grain. The initial per-
formance, including the ignition transient, was similar to Motors 2 and 3. The
difference in performance as result the L* change was apparently insignificant.
The remainder of the ballistic performance was exceptionally neutral, with a sharp

tailoff as shown by the pressure and thrust traces (Figure 53).
e. Motor 5

The ANP-3391 C-1 polyurethane formulation was used for the
first time I{n Motor 5. The grain was bonded to a Micarta sleeve. Grain thermo-
couples were placed in the uncured propellant to assure adequate restriction cf

the insulated wires.

The performance of this motor (Figure 54) indicates a sig-
nificant degree of progressivity in the first second of burning. After an indi-

cation of "rounding over" to neutral burning at 1.0 to 1.2 sec, additional
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IV.B. Task B, Subscale Motor Tests {cont)

progressivity was experienced causing a maximum chamber pressure of 2380 psia at

2.5 gsec. The remainder of the trace is regressive, except for the period of 4.02
to 4.20 sec. At 3.885 and 3.995 sec, the grain thermocouples at the liner inter-
face and at 1.0 in. radium was exposed without incident. At 4.020 sec the center

thermocouple at the same station was exposed, causing a 180 psi pressure increase.

The non-neutral performance of this motor was attributed
to a bond stress-induced failure causing burn front acceleration, with the effect
of a progressive restriction failure in the period up to 2.0 seg. The regressivity
of the last portion of the trace would be the effzct of the burn front returning
to a more normal shape, or nearly flat. The fallure at the center thermocouple

demonstrates this progressive-regressive behavicr.

f. Motor 6

Motor 6 was fired to confirm the performance of Motor 4,
using the small L* of 264 in. with ANB-3392 propellant. As can be seen in Figure
55, the ballistic trace is slightly progressive up to about 1.5 sec and is neutral-
to-regressive for the remainder of the firing. There is an unexplained momentary
dip at i.8 to 1.9 sec. However, the overall curve shape can be considered to be

neutral, being within + 2% of average after 0.5 sec.
2. Motor 17
Motor 7 was test fired to evaluate ballistic performance of
the ANB-3392 propellant at 140°F., The grain was stress-relieved by casting the

propellant into a Gen-Gard 4030 insuiation sieeve iined with SD-886-1. The motor
L* was 600 in..
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IV.B. Tssk B, Subscale Motor Tests {(cont)

Performance of this motor was not ncutral, as shown in
Figure 56, snd the opersting pressure wss significantly higher thsn expected.
The appsrent L% derived from the sverage burning rste was determined to be 0.672/
°F, compared with a value of 0.33%/°F for solid strands over the 80 to 140°F range,
or 0.262/°F over the range of =65 to +140°F.

The abnormal performance of this motor can be partially
attributed to surface area varistions occurring at small voids within the propel-
lant grain. Figure 56 also shows s qualitative comparison of void exposure within
the pressure-time characteristic, indicating that st least the small perturbations
and the progressive trend relate to burning surface variation. The true tempera-
ture sensitivity of the ANB-3392 propellant burning rate cannot be accurately

assessed on the basis of this test.
h. Motor 8

The efghth 3K5-1000 motor fired using a stress relieved
grsin of AWP-3391 propellant. Motor parameters were similar to Motor 5.

As seen in Figure 57, the ballistic curves are neutral, with
the exception of s slow ignition transient. The ignition phase, as well as the
distinct change in pressure level at 1.4 sec, are not immediately explainable.
Otherwise, the performance is neutral with a sharp tailloff, indicating uniform
flame front regressiaﬁ. The burning rate in 3KS-1000 motors for ANP-3391 propel-
isnt is slightly higher than the ANB-3392 propellant burning rate obtained in
previous firings st 80°F, i.e., 2.05 vs 1.94 in./sec at 2000 psia.

i. Motor 9
3KS~1000 Motor 9 was test fired to demonstrate ballistic

performance of the HTPB tormulation ANB-3392 with a plasticizer permeable liner
(5N-878-2)., Migration of both plasticizer and burning rate catalvst into the EPR
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insulation results in-a lﬁwér burning rate adjacent to the liner, since the loss

of the burning catalyst overrides the loss of plasticizer. This behavior has been
demonstrated with microstrand samples. The effect on motor performance is to cause
initial burning progressivity as partial surface doming develops, followed by neu-
tral burning as the amount of doming stabilizes, at approximately the level of

pressure produced without migration.

As seen in Figure 58, the test results do not fully sub-
stantiate the expected behavior. Between 1.0 and 4.5 sec, the chamber pressure
is higher than expected, as scaled from Motor 4 using the larger throat diameter
{0.479 vs 0.419-1n.2) with no migration effects. Some of this non-neutrality can
be attributed to throat area variation, also shown in Figure 58, but back-calcu-
lations of surface area and a high average turning rate {(about 7%) suggest that
the unusual performance might have resulted from grain defects. The pressure in-
creases at 1.0 and 3.7 sec correspond to axial locations of groups of small voids
observed in X-ray examinations, although the void surface area appears insufficient
to cause the magnitude of pressure increase. The effective grain diamecter (also
plotted in Figure 58) indicates variations up to 0.12 in. in dia, which is con-
siderably more than the observed maximum variations (from radiographs) of up to
0.03 to 0.04 in. The expected initial progressivity occurred before 1.0 sec and
the neutral pressure level after 4.5 sec is close to that expected. Thermocouples
implanted in the grain 0.5 in. from the forward end at three radial locations indi-
cated doming of approximately G.10 in,

j. Motor 10

The tenth JKS-1000 motor was test fired to demonstrate
ballistic performance of the C-1/PU formulation ANP-3391 with a plasticizer-
permeable liner (SD=-896). With this propellant a solid burning rate additive is
used, so that plasticizer migration into ti.c EPR insulation results in increased
burning rate at the liner interface. The effect of this on end-burner performance

is to develop a coning of the burn front and corresponding progressive pressure
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IV.B. Task B, Subscale Motor Tests {cont)

and thrust characteristics. Figure 59 shows that this behavior was well-demon-

strated in this firing with full-duration progressivity indicated. Thermocouples
in the grain measured a cone height of 0.52 in. at web burnout.

The initial operating pressure was predicted to be 913 psia
on the basis of solid strand burning rate, measured rhroat area and Cw' An in-
crease of 2% in pressure was estimated for the effect of the higher peripheral
burning rate, resulting in a pressure of 931 psia, which is only slightly higher
than the actual pressure of 910 psia. This 27 increase in pressure was based on
the microstrand burning rates and profile across the interface of a section of

the propellant removed from the aft end of the grain.

The maximum pressure was calculated in a similar manner
based on a surface area derived from the thermocouple exposure times. The in-
crease in surface area was about 8%. The calculated pressure, including an esti-
mate of burning rate gradient was 1135 psia, slightly lower than the measured
value of 1245 psia. This difference is probably related to inaccuracy in com-
pletely describing the developed surface area.

k. Motor 11

Motor 11 was planned as a stop-fire so that the quenched
burning surface could be observed. The motor was similar to those tested at NWC
using ANB-3392 propellant. The chamber was modified in the aft end to provide
access for a high-pressure water quench. The nozzle insert was retained in the
housing by a ring held in place by eight explosive bolts. The bolts were to be

fired at an intermediate burning duration, followed by actuaticu of the quench
at low pressure,

The motor ignited normally d operated at the expected
pressure level shown in Flgure 80. At 3,24 sec the throat Insert was ejected by

firing the explosive bolts. Chamber pressure dropped correspondingly, but burning
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IV.B. Task B, Subscale Motor Teats (cont)

continued at a very low preaaure. The quench actuation waa inadvertently delayed
until 11.91 sec. The quench caused a subatantial incieaae in preaaure until 13.06
aec when motor operation was terminated by ejection and destruction of the grain
cartridge

At the time the nozzle insert waa ejected, the grain car-
tridge, restrained by the nozzle housing, was apparently moved aft by the large
pressure differential during depreaaurization. This reaction was necessarily
accompanied by buckling of the aft end of the cartridge phenolic sleeve, thereby
displacing the location of the holes in the sleeve needed to provide acceas for
the quench water to spray on the grain face., Then, when the quench was actuared,

the water pressure was applied outaide the grain cartridge, causing the grain
ejection.

1. NWC Tests

Based on an analysis of the results of the subscale motor
testa conducted at Aerojet, a motor design confijuration was selected for a series
of teats at NWC to provide final continuation of the solutions to the problem of
non-unilorm burn front regression in subscale motors. Eight 3KS$-1000 size motors
were tested; four with ANP-3391 and four with ANB-3392. Motor parametera were the
aame for all eignt tests: L* = 600 in., nozzle entrance angle of 45 degrees, and

a throat area of 0.138-sq in. The barrier liner SD-886-1 was used in all motors.

All motors were X-rayed during firing (motion pictures) as
well as being instrumented for pressure and thrust. Figures &1 through 68 show
the pressure and thrust plots for the ANP-3391 grains. Review of the X-ray f(ilms

has shown that the burn front progression was essentially uniform in all casea.

In assessing the performance of the ANP-3391 grains, the

thrust curves (Figures 62, 64, 66, and 68) are indicative of the neutralitv achieved.

The initial progressivity up to 1.0 sec is similar to that noted in motors fired at

Aerojet., The overal} trend appears to be very slightly progressive, with the
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IV.B. Task B, Subscale Motor Tests (cont)

exception of grain No. 6 of Batch 71-33, where the progressivity is slightly pro-
nounced. There is no known variation in this particular grain that would result
in this behavior. 1t is possible that the thickness of the liner was inadequate
to prevent plasticizer migration, but there is no specific evidence to support

this conclusion.

The pressure curves do not necessarily display the same
degree of neutrality as the thrust curves. This deviation is attributable to
nozzle threat area changes, primarily because of aluminum oxide deposition and
removal, sometimes abruptly, such as shown in Figures 67 and 68, resulting in

ringing of the thrust stand and oscillation of the thrust traces.

Figures 69 through 76 show the pressure and thrust plots
for the ANB-3392 grains. Performance of the ANB-3392 grains was more uniform.
Figures 70, 72, 74 and 76, show that the thrust traces are neutral, with grains
5, 7, and 8 showing a slight saddle shape and grain 6 showing slight overall
progressivitv. As mentioned previously, the variations in the corresponding

pressure-time curves are attributable to throat area changes (Figure 69).

4.  Results of 10KS-2500 Size Motor Tests

Based on the highly successful performance of the 3KS5-1000 size

(4.5-in.~dia grain) subscale motors at YWC, the same barrier liner and generally
. the same motor parameters were sclected for scale-up to the 10KS-2500 size (8.5~ 3

in.-dia grain)} motors.

. One 10KS$-2500 gize motur was prepared with each propellant formu- 2
lation, ANP-3391 and ANB-3392, The motors contained 39-in.-long by 8.5-in.-dia
grains that were cast in 0.0850-in.-~thick sleeves of Rocketdvne R-151 EPR insula- }
tion lined with the SH-B86-1 liner. The grains were bonded to the case only at I
the forward end. Thue motor L* was 200 in., smaller than the 3KS-1000 motors but
similar to that expected in the full-scale motor, and the nozzle was sized to oper-

ate at about 1300 psia.

Page 39




o ) :"Eﬂ i , ERathl o, TP £ M Ty HE g FERE R gty
e e o e T e Ll SRERRESL S N

Report AFRPL-TR-71-138

IV.B. Taak B, Subscale Motor Teats (cont)

As ahown in Figure 77, the firat motor (with ANP-3391) ignited
and operated normally until about 2.0 sec, when the preasure traces started to
behave erratically. Pcl apparently was plugged with aluminum oxide and failed
to register accurately again. Pc2 became intermittently plugged until the period
of 4.6 to 6.05 sec. The motor thrust trace showed relatively normal but progres-
sive behavior until 6.05 aec, when the nozzle-to-case seal failed, causing a
progreasively larger hole in the pressure vessel (at the'gap in the snapring and
near the Pc2 preaaure line), the resultant performance decrease, and 2 to 3 min-
utea of low-pressure burning. There are some abrupt changea in thrust level at
several points, but these cannot be correlated with pressure and may be associated

with a test atand or load cell anomaly.

The loss of chamber preasure data was attributed to aluminum oxide
plugging of the pressure pickup. Posttest evidence of plugged pressure porta sub-
stantiates this conclusion. The pressure taps were located in the nozzle insula-
tion outside the graphite insert, as there was no practical way of tapping the caae

wall.

The cause of the seal faillure was not readily evident. The nozzle
ia attached to the chacher with s srapring, the installation of which requires the
use of a compression ring between the nozile and chamber insulation. The usual
precautions were taken in Inspectlon of the mating steel components and O-ring scal.
A silicone rubber sealant was used aL the Insulation interfaces sand the internal
surfaces were Inc ected using a mirror atier motor assembly. On postfire inspec-
tion the 0.30 in. of IBC-111 case {nsulation was charred to the steel over a wide
area, but this is attributable to the excessive burp time. The silicone rubber
compression ring was larpgely intact and bonded to the nozzle, except where the
leak occurred. which would be the expected condition in this situation. 1t was
concluded that elther the compression ring provided inadequate thermal protection,

cr the seal was initially defective.
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IV.B. Task B, Subscale Motor Tests {cont)

Because of the difficulties with the pressure port plugging and
nozzle sealing in the standard 10KS-2500 hardware, the second grain (ANB-3392) was
removed from the 10KS-2500 chamber and reinstalled in a heavyweight workhorse
chamber of slightly larger diameter, but about 12-in. shorter. This action allowed
pressure measurement through the case wall, greater case insulation thickness, a
more positive flange=-joint seal, and a more elaborate insulation joint interface.

IBC-111 insulation was cast around the grain to supplement the existing insulation.

The motor was successfully test fired showing a slightly progres-
sive thrust-time charactetristic, as shown in Figure 78. The more neutral pressure
curve is the result of throat erosion. The silver-infiltrated-tungsten was severely
scalloped on the entrance contour, with the pattern extending past the initial throat
plane. This behavior was apparently caused by momentary deposition of unburned

aluminum exaggetrating the local heat transfer rate.

The initial operating pressure was very close to the predicted
1300 psia. The subsequent non—neutrality of the thrust is not readily explained
on the basis of what is known about the grain. X-rays of the grain previously
showed scattered small voids, but there is no evidence of significant area vari-

ations either from voids or from non-uniformities in diameter.

5. Interior Ballistics Analvsis

Estavlishing the capability to predict the performance charac-
teristics of end-burning motors is an important objective of the program. An
analysis of the interior ballistics of end-burning motors based on theoretical
considerations as well as the results of the laboratory and subscale motor tests
is the first step in achieving this capability. Based on this analvsis, a com-
pu.er program describing the ballistic performance has been prepared and che:ked

out, although refinements to the program are still in process.
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IV.B. Task B, Subscale Motor Tests (cont)

Analysis of the interior ballistics of the end burner is divided

into-seven sub-gsections dealing with specific problem sreas:

6.
7.

Ballistic anslysis
Ignition analysis

Nozzle erosion/deposition
Heat losses

Aluminum combustion
Ablation

Burning rate gradient

The ballistic snalysis is basically a composite of the transient

mass and energy balances thst considers mass addition from the igniter, propel-

lant and insulation (items 2, 6, 7 sbove), and energy losses as result of hest

losses snd incomplete burning of aluminum (items 4 and 5). The effect of these

on the pressure depends on the nozzle flow area (item 3). In the snslysis, com-

bustion effects are assumed tc occur that are shown below:

Factor

Ignition

Nozzle size

Heat losses

Ablation

Burning rate
gradient

Aluminum
combustion

Mass Balance

Adds flow. Initiates flow
from propellant.

Influences pressure. Depo-
sition of condensed oxide
and thermal expsnsion is
followed by shearing of
molten oxide and eventual
erosion of nozzle.

Initial flux to insulation

to provide ablation. Radi-

ation dominates gap. Radi-

ation and forced convection
dominates insulation loss.

Forced convection domirates
nozzle losses.

Mass addition - dominated
by radiation heat flux and
convective flow.

Affects burning area as
well as burning rate.

Removal of oxides affects
I .
s
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Influences L* snd
aluminum combustion

Energy loss

Lusses decreased by
energy return with
insulation addition

Energy loss affects L%,
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1V.B. Task B, Subscale Motor Tests (cont)

Many interesting facts are shown during the analyses. First,
the bag igniter tends to lose some 30% of its initial charge through the nozzle.
Ignition does not appear to be affected, however, because of the high ignitabi-
lity of the propellant.

In calculating the heat losses, the Bartz method was first used
to calculate the convective heat losses as well as to estimate the boundary layer
thickness. This classic method, however, was found to be too costly to utilize
and several simplifications were introduced to reduce computer run time. Prelimi-
nary results indicated that the boundary layer thickness, 0, in the nozzle appears
to grow such that the actual nozzle diameter is affected by several percent. When

the burning rate is lower than for the case used in this prograw, boundary layer

buildup appears as a real problem because of the relatively small nozzle. Generally,
6 grows with chamber length. With center-perforated grains the At also increases
with increasing chamber length and therefore will change proportionately to ©. How-
ever, in an end burner © can grow as the burning surface recedes, whercas At remains
constant, depending on the chamber diameter, hence the problem of an increasing ©

is unique tc the end-burncr.

Next, the presence of a gap around the grain (resulting from stress
relieving systems) can provide a significant contribution to I* and depends on the
actual dimensions allowed by the tolerance. Although this effect might contribute
significantly to a delay in the chamber {1l time, it dves not appear capable of

explaining the very slow ignition periods noted.

Calculations regarding the sloughine off of condensed oiuminum
oxide in the rnozzle were completed using the Vidva program. The calcutations in-

dicate that the rate of nozzle area change 1s the right magnitude to acccunt for

the chanpes empirically found.
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IV.B. Task B, Subscale Motor Tests (cont)

Thermodynamic calculations of mixtures of ablative and propel-
lant gases have shown that the higher Isp of the HTPB propellant is effectively *
reduced by addition of ablation products. Also, the calculations showed that the
thermodynamic properties are sufficiently pressure and temperature sensitive that e

detailed statements regarding these properties in the computer description were
needed.

6. Ballistic Analysis

After the computer program description was completed the program
was checked out. Plots prepared from calculations showing predicted performance
effects are presented in Figures 79 through 82. A baseline performance curve was
calculated so that the separate effects of various factors could be compared. This
baseline case assumed no heat losses or ablation, all aluminum burned at the sur-
face, no changes in throat area, and constant surface area. The baseline calcu-
lations were for the tw- L* values tested, 630 and 370 in. (Figures 79 and 80).
The baseline cases naturaily predict pressure rise times proportional to L*. When
heat losses are included a shift in time of about 5 miliisec is introduced and the
operating pressure is deéreased by about 35 psi, or 2% during ignition, and about
double this over the entire firing cycle., However, the actual performance is sig-

nificantly different from this simple baseline, although the final pressures are
essentially correct.

Experimentally it was found that the effect of changing L* is
quite small. Considering the various possibilities that cou'd account for this
it is concluded that heat losses, ablation, changes in throat area or slow igni-

tion could not account for the observed insensitivity to L*, Further, the calcu-

; lated baseline rise rate itself is too high by a4 factor of two. Therefore, it is ’

g apparent that the aluminum combustion is the most likely candidate for the reduced

k"

E ignition rise rates observed in the 3KS-1000 size motor firings. ~d
é i
3
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IV.B. Task B, Subscale Motor Tests {cont)

A preliminary estimate of the effect of aluminum combustion with

and without heat losses is given in Figures 81 and 82 for the two values of L¥*

(370 and 630, respectively). In Figure 81 the experimental case represented by

3KS-1000 size motor firings 4 and 6 (see Figures 53 and 55) are alsc given for
comparison. The motor firing data show a slower ignition rise rate up to about

0.125 sec and then a secondary pressure rigse phase up tn about 1 sec and then
equilibrium. Using aluminum burning and heat losses this secondary pressure rise
phase is well simulated. However, the predicted ignition phase still shows a
ﬁressurization rate faster than actual. To explain this difference, the other
factors affecting performance will be evaluated, but it is believed that the slow

pressurization rate might have to be explained by hypothesizing a slow burning
rate during ignition.
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V. GLOSSARY OF TERMS
4
Prepolymers é
B-2000 Poly(1,2-butylene)glycol ) %
CTPB (HC-434) Carboxy termlnated polybutadlene, - i
Thiokel Chemical Corporation i
CTPB (Telagen) Carboxy terminated polybutadiene, .
General Tire and Rubber Company ]
HTPB (R=45) Free-radical inltlated hydroxy-termlnated 1
polybutadiene, Sinclair 0il Company |
NPGA Neopentyl glycol azelate %
PBAN Terpolymer of polybutadiene, acrylic acid |
and acrylonitrile, American Synthetlc i
Rubber Co. 4
P
Crosslinker ! %
TP=-4040 Polypropylene oxide adduct of i
trimethylolpropane A
MMA Methyl nadic anhydrlde
Curing Agents
HDI Hexamethylene diisocyanate I
IPDI Isophorone dilsocyanate
TDI Tolylene dllsocyanate
BISA Butylene imine adduct of sebacic acld
MAPO Tris(2-methyl aziridinyl)phosphine oxide
DER-332 Diepoxide of bis-phenol-A .
Bonding Agent o
c-1 2,3-Dihydroxypropyl-bis-(Z-cyanoethyl)amine
4 FC-157 Aerojet proprietary ltem
y
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V. Glossary of Terms (cont)

Burning Rate Catalysts

Cu0202 Copper chromite, Harshaw Chemical Company

& Catocene Nonvolatile liquid ferrocene derivative,
Arapahoe Chemicals, Inc.

. Insulation
3 Gen-Gard V-4030 EPR material, General Tire and Rubber Co.
R=-151 EPR material, Rocketdyne Division of
North American Rockwell
IBC-111 Castable PBAN-epoxy insulation material
Ammonium Perchlorate
Oxidizer
RRD Ung Rounded rotary-dried unground,
Average particle size = 180 microns (u)
‘ SSMP Slow-speed Mikropulverizer ground, 130u
MA Mikro Atomizer ground, “7u
UFAP Ultra Fine Ammonium Perchlorate, ~0.5u
Plasticizer
1DP Isodecyl pelargonate
Other
A-35 Washcoat composed of trichloroethylence
- ferric acetylacetonate and TDI
erf Error function
’ H-60 Aluminum Spherical aluminum powder, 60u
. particle diameter
MSA Mine Safety Appliance Co.
MSBR Microstrand burning rate
SSBR Solid strand burninpg rate
Twitche-1 Base B240 Sodium salts of sulfonated hivdrocarbons

extended with paraffin oils
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V. Glossary of Terms {(cont)

Symbols
u

ck

DPT

1
sp
K

L*

Mechanical Property Symbols

ar
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Micron

Charactetristic exhaust velocity
Double Plate Tensile

Impulse

Specific impulse

Port to throat ratio

Ratio of motor free volume to nozzle
throat area

Shift factor

Reduced strain rate

% Elongation (at break)

% Elongation at nominal maximum stress
Initial modulus, psi

Nominal maximum stress

Time to nominal maximum stress
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%
AP Average Pressure, Burning Rate at

) Number psig psig 1000 psig, in./sec @
- 1 220 1010 1.54 ;
2 230 1010 1.54 i

. 3 240 1010 1.52
4 230 1010 1.55 3

5 280 1030 1.53

6 240 1010 -~ 1.53

7 240 1000 1.56
8 220 990 1.53 |

9 220 1000 1.55
10 240 1000 1.55 ?
X = 1.540 i
o = 0.0125 !
2
V =0.8 3

Strand Dimensions: 0.6- by 0.3- by 1.3-in.

Reproducibility of Microstrand Burning Rate Determination, ANB-3392 Propellant

i (Batch 70-=141)

Figure 3
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Time, sec

Pressure and Thrust vs Time Curves, 3KS-1000 Motor No. 10 {ANP-3391)
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Bateh 7126, Grain 6, Pressure vs Time, ANB-3392
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MECHANICAL PROPERTY ANALYSIS
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APPENDIX

A serles of tests were conducted for the purpose of characterizing the
mechanical responses and failure behaviors »f the ANP-3391 and ANB~3392 formu-
lations. Resulting data that have been summarized in tabular form and plotted
in a manner found to be most zpplicable for use in stress analyses and struc-
tural integrity evaluations are shown in Figures la through 17a. A brief descrip-
tion of the types of tests performed and the significance of the data are pre-

sented below.

The propellant's coefficient of thermal expansion determines the magni-
tude of the strains developed in the grain upon cooling from the cure tempera-
ture. It is determined experimentally from measurements nf density at various
temperatures by means of a buoyancy technique. The volumetric coefficient is
obtained directly from the slope of a density-temperature plot and the linear

coefficient 1s taken as one~third of the volumetric value.

Various types of modulus data are required for an analysis. For calcu-
lating stresses produced during long-term storage the appropriate relaxation
modulus, taken from a "master relaxation curve" is used (Figures 5a and 13a). This
curve is generated from the results of relaxation tests conducted at various
temperatures. The test involves applying a small, fixed strain to a specimen
and measuring the decay of the stress with time. The "master curve" is comstructed
by empirically shifting the individual log modulus vs log time curves along the
time axis until they superimpose at a selected reference temperature, usually 77°F.
The amount of shift required for each curve determines the shift factor, ar {Figures
4a and 12a).

For determination of the bond shear stresses produced by motor firing the
pertinent modulus values are obtained from wr -vial tensile tests performed at
various rates snd temperatures. The data, plc .ced in the form modulus vs log re-

duced strain rate, éaT, (Figures 7a and 15a) can be used to obtain the appropriate

/33

modulus for any desired firing conditions.

Page 1
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APPENDIX (cont)

The uniaxial tensile data can also provide an indication of the propellant
strain beering capabilities for storage and firing at various temperatures by con-
structing plots of elongation vs log reducted strain, éar. (Figures 6a, Ba, l4a, and
16a). The applicable rates can be determined by dividing the expected strain for

cooling or pressurization by the time required to reach thermal equilibrium or
the time to reach maximum pressure.

The propellant's capability to withstand long-term stress can be assessed
from uniaxial tensile data through use of plots of log maximum true stress vs log

reduced time to maximum true stress. This plot also provides the parameters re-

quired for cumulative dsmage analysis.
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Cure Temperature, °F

Cured Densitg (25°C)
g/cc (1b/in.9)

Volumetric Cure Shrinkage, %
Liquid - Solid
After gel

Glass Temperature, °F

Coefficient of Thermal
Expansion, in./in./°F

=100 to +32°F
+30 to 150°F

Heat Capacity, Cp,
Btu/°F/1b

Thermal Conductivity*
Btu . ft'z.hr'].(°F/ft)']

F¥i=Kpt

ARP-3391

116

1.825
(0.0658)

0.55
0.25 (est)
=135

5.4 by 10°
5.9 by 10

0.288
0.171

where ) = thermal conductivity

K = thermal diffusivity in ft
p = density, in 1b.ft"

2 1

hr”
3

C = heat capacity in Btu.°F 1 .1b"]

Propellant Properties Summary

Figure la

ANB-3392

110

1.756
(0.0634)

0.57
0.25 {est)
=131

5.7 by 107°
5.9 by 107°

0.296
0.175

T it .
s TSP ST,

P
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The following data are presented:

Effect of Test Temperature and Strain Rate on
Uniaxial Tensile properties

aT vs Temperature

Mas ter Relaxation Curve
€y VS éaT

€, VS €d;

E, Vs éaT

um/Eo Vs eay

True Stress vs tm/aT

Mechanical Property Summary Sheets for ANP-339]1 Propellant

Fligure 2a
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9
= T T T 1
Reference Temperature = 77°F
; 8 Batch No. 70-131 ]
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Plot of Log a_ vs Temperature for ANP-3391
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Figure 4a
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AT O Y

The following data are presented:

Effect of Test Temperature and Strain Rate on . 3
Uniaxial Tensile Properties 3

4
ar vs Temperature é

j 4
Master Relaxation Curve :
€q VS €27 %
€, VS €ay 3
b |- 3
EO Vs E.:aT |

“m/Eo VS edr

True Stress vs tm/aT

Mechanical Property Summary Sheets for ANB-3392 Propellant
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10

I I

Reference Temperature = 77°F .
Batch No: 70-130

10

100l \\\\\\‘\\

Temperature, °F

s 107 ]
]
; 1074

g -80 -40 0 40 80 120 160 ]
:

Plot of Log a, vs Temperature for ANB-3392 Propellant
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Flgure 12a
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